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Quantum phase transitions and the extended coupled cluster method
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We discuss the application of an extended version of the coupled cluster method to systems exhibiting a
guantum phase transition. We use the lat@¢d) nonlinear sigma model in (£1) and (3+ 1) dimensions as
an example. We show how simple predictions get modified, leading to the absence of a phase transition in
(1+1) dimensions, and strong indications for a phase transition inl(8dimensions.
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The nature of the ground-state wave function(iafinite) operators. The calculational scheme used is then very similar
guantum systems is one of the underlying problems in manjor both the ground state and the excited states.
areas of physics, from atomic and condensed matter to high- In this Brief Report we shall concentrate on zero tempera-
energy physics. Special problems are encountered when omere, also called quantum, phase transitions. The most impor-
studies the transition between different ground states in caséant exact statement for such situations is the Coleman no-go
where the balance of forces in a system with competing intheorem[1] which states that, in one space dimension and
teractions is shifted. Since this is such a basic problem, &nder rather generous conditions, there is no phase transition
large number of calculational schemes exist to study th&0 a state with long-range order. As is well known from the
properties of the ground state. These schemes are eithekact solution of the&XXZ model in (1+1) dimensiong2],
imaginary-time approaches, based on the fact that in imagthis does not preclude a phase transition with an apparent
nary time the state at lowest energy has the slowest rate @@pless mode, but without real long-range order. Notwith-
decay and can thus be filtered out, or are real-time scheme&@nding such special cases, the theorem is a strong indict-
usually based on the Rayleigh—Ritz variational principle. AllMent against mean-field calculations, usually the lowest or-
of these methods have some weaknesses. In high-energ‘ir in the real-time approaches, since these often predict

physics, for example, imaginary-time Monte Carlo calcula-P ase transitions with long-range order even in one dimen-

tions can only be performed on finite lattices. As a real phasglon' The reason s that mean-field theory ignores the strang

o . P interactions of the massless modes that accompany such a
transition can only occur in an infinite system, one has to

find ways to extrapolate to infinite lattices, and hope nophase transition, which pushes up the mass of the would-be

finite-latti tifacts arise. Even if thi be d zero-mass modes.
inite-lattice artrfacts arise. tven I this can be done, an even - qng \yay 1o avoid this phenomenon is to concentrate on

more fundamental problem in the Monte_CarIQ integrationsy, phase with unbroken symmetry, and to construct a cal-
arises, due to the uncontrollable fluctuations introduced by |ational scheme for that phase. Such approaches have been
fermionic degrees of freedom. This problem limits the valid- ;seqd in spin-lattice systems and in lattice field theories
ity of Monte Carlo approaches in condensed matter as wefl3_g], put it has been found that they sometimes lead to
as those in latticégauge-field theory. Real-time methods, termination points, probably indicating a phase transition, for
on the other hand, are usually based on rather compleghe (1+ 1)-dimensional system as well as in higher dimen-
many-body techniques, and lack the inherent simplicity ofsions. The excitation spectrum supports this behavior, and
the implementations of Monte Carlo approaches. Also, eveBuggests a phase transition to a state with long-range order.
though most real-time methods start from the variational The most complicated part of the real-time approaches is
principle, this principle is often violated in an attempt to the choice of a truncation scheme. One must make a selec-
obtain a viable calculational scheme. tion which has enough degrees of freedom not to restrict the
An important difference between real- and imaginary-physical behavior of the system, nor to impose any assump-
time approaches is the way they deal with excitations—tions of the nature of the phase transition on the system, and
whereas in imaginary-time methods excited states need to bt too many to make the calculation infeasible. A good
found by looking at exponentials with faster decay than thechoice of wave function is key to any quantum many-body
ground state, or via complicated Gramm-Schmidt orthogoealculation, and more importantly, there must be a way to
nalization procedures, the calculation of excitations is ofterextend the calculations so as to test any assumptions being
much more straightforward for the real-time methods. Oncamade.
we have constructed the ground state we can build excited Our approach is an example of such a formalism. The
states on top of this ground state, using sets of excitatioapproach we use is, however, systematic and will not give
rise to spurious phase transitions. The method is an offshoot
of the coupled cluster method, called the extended coupled
*Present address: ECT, Strada delle Tabarelle 286, 1-38050 Vileluster method(ECCM) [7]. Theoretical aspects of the
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"Electronic address: n.r.walet@umist.ac.uk number of applications to nontrivial models is extremely
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of all, the mean-field approximation is a natural part of thecluster method6], and have found that without the one-body
hierarchy of approximations inherent to the method. It is thugerm there is a termination point for one, two, and three
suitable to deal with states at both sides of a phase transitiodjmensions. This has been interpreted as a signature of a
where one exists. We shall show in this letter that(am phase transition. In one dimension this cannot be true, since
principle infinite set of improvements removes the spuriousthe Coleman theorem forbids such a phase transition. This
transition in one-dimensional systems. For the moment wenakes one distrust the other results as well. We show that
shall not include the mean-field term in our calculations, buthe extended CCM is able to give much more reliable results.
concentrate on two-site correlations instead. While this re- In the extended coupled cluster method the bra and ket
stricts us to the symmetric phase, it makes it easier to perstates are parametrized independently, corresponding to the
form numerical CalCUlationS, which can be quite SUbStantialuse of a bi-orthogona| basis. We define two Opera’\ﬁ_)md

We shall illustrate our method with a simple field theory, &', from which we we build up a variational function&l

EjheO(éf) ncr)1nl||r_1ear &g_m&l;lLS)h'mode(Ij. \INe halve .cho_sen 0 \which is the ground state expectation value of the Hamil-
iscretize the Lagrangian for this model on a lattice in spaceyian in a special state,

keeping time continuous. We then construct a Hamiltonian,
which is the quantity being studied. The basic degrees of N
freedom are unitary two-by-two matrices, but these can also I[S,S]=(Dg|eS e SHe @) = (¥ |H|P), 3
be represented by a four-dimensional unit vectgng), us-

Ing a basis of Pauli matrices where |®) is the model, or reference, state, that must be

chosen separately. A key ingredient in the definition of the
correlations is a set of generalized creation operators, that

The Hamiltonian is most succinctly expressed in the angldnust be chosen with reference to the stabg), i.e., the

between nearest-neighbor vectors, and the on-site gener lermitian conjugates of the creation operators annihilate
ized angular momenta ®p). In the symmetric phase we shall use the free-rotor

vacuum, the product db waves at each lattice site, as refer-
1 ence state. It can be shown that the use of single-site opera-
H=3 > 12412 (1—coséy), (2) tors is a way to construct the mean-field approximation.
' (i) When the mean-field is zero, the lowest nontrivial correla-
tions are two-site operators,

U=nul+i7-n. (1)

where the sum ove(ij ) runs over all nearest-neighbor pairs,
and counts each pafor lattice link) only once. The kinetic
energy is proportional to the square of {li@eur-dimensional & E &
angular momentuml,iz. This model shows great similarity - T Si
with some Heisenberg-type models used in condensed-

matter physics. L . -

We expect a phase transition due to the competition be\évhere the sums run over the infinite lattice, and similarly for
tween the kinetic and potential terms. For smalthe weak- S'- The operatorss; create a simultaneous excitation at the
coupling limit, the first term is dominant and the Systemlattice sitesi andj. The precise definition of these operators
consists of a set of independent rotors. In the strong couplini ot crucial to the current discussion, and can be found in
limit the potential dominates and all vectors tend to align. Asour previous worK6]. By going to the coordinate represen-
we increase\ the excitation spectrum is also expected totation, it has been shown that specification of the operators
change from a free rotor spectrum at smalito a spectrum S,— corresponds to specification of a single function
containing three Goldstone modes, corresponding to the dyS(cosé;). We choose to work in this representation. In the
namical breaking of chiral symmetrd(4)— O(3), atlarge  numerical calculation we have to truncate up to a certain
\. length of the relative distance betweieandj, but this can be

This behavior can most easily be seen in the mean-fielihvestigated systematically by using various truncations and
approximation. Let us assume that on average all the vectogudying convergence. Both the bra- and ket-state correla-
align along the 4-axis. It can be shown that in that case wé&ions have to be truncated in the same manner to ensure the
obtain [8] a nonlinear version of the Mathieu equation, conservation of certain analytical properties of the varia-
which has a nontrivial solutiofwith broken symmetryonly  tional principle underlying the methof7]. The functions
for \D>3, with a standard first-order phase transitiornat S(cosé;) can be expanded in Gegenbauer polynomials of
=3/D, whereD is the dimensionality of space. Below the the relative angle; between the unit vectors at lattice sites
phase transition point the wave function at each site is jusit andj, but the expansion converges so quickly that the re-
the spherically symmetri8wave of the free rotor, and above sults are essentially converged with the first five polynomi-
the phase transition we find a two-dimensional degeneracwls. Because of the translational symmetry of the lattice the
corresponding to positive and negative alignment with thecorrelation functions depend only on the relative vector
4-axis. i—j. For an optimal choice c8andS’ the functionall must

In the symmetric phase, one can ignore the one-bodye stationary with respect to independent variations of the
alignment, and concentrate on two-site correlations. We haviera and ket states. This leads to the nonlinear ECCM equa-
investigated these processes using the normal coupledions[7]

(4)
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FIG. 1. (a) The lowest excitation energies aib) the second A

derivative of the ground-state energy for the NLS model in (1
+1) dimensions. The labels—m refer to truncations ah base
functions andm correlations.

FIG. 2. (a) The lowest excitation energies, afig) the second
derivative of the ground-state energy for the NLS model in (3
+1) dimensions. The triangle indicates the NCCM endpoint.
The labelsn—m refer to truncations ah base functions anan
5' ’ // H .

[{S",S}] _o, SI[{S",S}H 0 ) correlations
53(’—; 0Si-| We have applied the ECCM to the NLS model on a (1
. . i . . +1)- and a (3+1)-dimensional cubic lattice. We have stud-
Slrtme ”,:.e l|<|et slrate |s.b<?ef!ngd as c?n texpongnngl It cofntan@d various truncations, and found that for the expansion of
o o et e o mbepemsan. 341 Gegenbauerpolyromil e such uncionsappeal

be enough. For the truncation of the range of the functi®ns

correlations. This is a natural choice, since the correlatlor\1Ne have proceeded as far as practicable, by including all

operators are combined in linked objects, such as in GOIdéorreIations that fit within a cube of sizé. For the
stone’s linked c_Iuster the_oreﬁﬁ)], and, mdeeq the coupled_ (1+1)-dimensional case we can almost use arbitrarily large
pluster method itself provides by far'th.e ¢a5|est proof of thl%/alues ofL, say including a hundred lattice sites. For the
|mp0rt§nt theoren10]. Due to '_[he similarity tr_ansform_ ex (3+1)-dimensional result the best calculation was limited to
ponentiale”* on the left-hand side of the Hamiltonian in the those correlations that fit inside a cube of length 5.

functional Eq.(3), | is a polynomial in the correlation func-  For a linear chain the ground-state energy has converged
tions. This has large advantages for high-order computegompletely with correlations which extend over up to 75
implementations to solve Eqé). lattice sites. The susceptibility, the second-order derivative

We shall contrast the results of the extended coupled clugsf the ground-state energy, changes smoothly with the cou-
ter method to those of the normal coupled cluster methoghjing constant, indicating the absence of a transition region.
(NCCM), where the bra state is parametrized linearl8  This is confirmed by the excitation energy. The lowest exci-

~ - : tation energy seems to have converged with five base func-

(W]=(@g|(1+S"e"". (6)  tions and 75 correlations, although the global trend sets in at
. much lower orders. The mass gap remains finite. Clearly,
Therefore, in the NCCM, the overlap of theAbra and ket Stateqese results are in agreement Wsig'[hF)the Coleman theorem gnd
extends only as far as the correlation oper&brit has been gre 5 step beyond the mean-field, and NCCM, results.
shown in Ref[7] that exponentiating’ extends the overlap For the cubic lattice the ground-state energy has more or
over the whole lattice and also breaks certain symmetries déss converged for five base functions and all 55 correlations
the functional which allows one to cross a phase transitionthat fit in a 5<5X5 box. The susceptibility shows two re-
instead of breaking down at the phase transition point, whiclgions: a linear, almost constant, susceptibility for the weak-
often occurs for the NCCM. coupling regime, and a steeper behavior for the strong-

Using the time-dependent variational principle we cancoupling regime. In low-order calculations the behavior
find low-lying excitations of the system by considering har-between\~0.6 and\A~0.7 changes drastically, while the
monic fluctuations about the ground state, also called thé&end on both sides outside this region is already predicted by
RPA approximation. Since we have the functional in an anatlow-order results. Even though the results do not allow us to
lytical form we are able to calculate the excitation energiesnake a definite statement about the nature of the transition, it
relatively straightforwardly(see Figs. 1 and 2. seems weaker than a second-order phase transition. The ex-
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citation energies again confirm these results. Although thenly depend on the number of basis functions, which indi-
convergence is too slow to determine whether a masslessates a finite, physical correlation length. The convergence
mode appears, it dips at the phase transition and rises fast iith the number of basis functions is quite fast, indicating
the strong-coupling regime. Several low-lying excitation en-that the correlations are smooth functions of the relative
ergies turn complex beyond the phase transition, indicatingingle, which indicates that the large number of correlations
that excitations in this, distinctly different, phase are notare essential to describe the phase transition properly since
properly described without the one-site correlations necessingle correlation operators contribute only very little. This
sary to describe symmetry breaking. The absence of this phgys holds for the (3 1)-dimensional system, but we never
nomenon in (1) dimensions is another indication that no fy1y reach convergence with the range of the correlations.
phase transition occurs for this case. _ __Both expansions seem to interplay in a complicated way in
The slow convergence in the transition region also indi-he resylts. However, the ground-state energies generally
cates that many long-range correlations play an importantonyerge much faster than the excitation energies.
role as is the case in a real phase transition. The absence of \yjitn the ECCM we find signatures for a phase transition
this behavior in (1) dimensions is due to the special 4 tye O(4) nonlinear sigma model in (81) dimensions,
properties of the one-dimensional system that keeps the Cofhich confirm our naive expectations. In{1L) dimensions
relation length finite. The ECCM has the property that bothyye phase transition does not occur, as expected from Cole-
the ket and bra states are expressed in linked-cluster coeffizs s theorem. These results show clearly that ECCM is a
cients. Therefore, _the length over vyhich ECCM correlationproper many-body technique for the microscopic study of
operators extend is a good indication of the length of the;pase transitions and other critical phenomena in cases inac-

physical correlations. o cessible with other methods, and we intend to use it in fur-
Since we have a dual expansion, in the extent of the corger studies.

relations, and in each correlation in a set of basis functions,

we must look at the truncation systematics for both of these. We acknowledge support of a research grd@R/
For the (1+1)-dimensional system, beyond a minimum L22331) from the Engineering and Physical Sciences Re-
length of the correlation&bout 30 lattice unibs the results search Counci(EPSRQ of Great Britain.
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