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Quantum phase transitions and the extended coupled cluster method
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We discuss the application of an extended version of the coupled cluster method to systems exhibiting a
quantum phase transition. We use the latticeO~4! nonlinear sigma model in (111) and (311) dimensions as
an example. We show how simple predictions get modified, leading to the absence of a phase transition in
(111) dimensions, and strong indications for a phase transition in (311) dimensions.
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The nature of the ground-state wave function for~infinite!
quantum systems is one of the underlying problems in m
areas of physics, from atomic and condensed matter to h
energy physics. Special problems are encountered when
studies the transition between different ground states in c
where the balance of forces in a system with competing
teractions is shifted. Since this is such a basic problem
large number of calculational schemes exist to study
properties of the ground state. These schemes are e
imaginary-time approaches, based on the fact that in im
nary time the state at lowest energy has the slowest rat
decay and can thus be filtered out, or are real-time sche
usually based on the Rayleigh–Ritz variational principle.
of these methods have some weaknesses. In high-en
physics, for example, imaginary-time Monte Carlo calcu
tions can only be performed on finite lattices. As a real ph
transition can only occur in an infinite system, one has
find ways to extrapolate to infinite lattices, and hope
finite-lattice artifacts arise. Even if this can be done, an e
more fundamental problem in the Monte Carlo integratio
arises, due to the uncontrollable fluctuations introduced
fermionic degrees of freedom. This problem limits the val
ity of Monte Carlo approaches in condensed matter as w
as those in lattice-~gauge!-field theory. Real-time methods
on the other hand, are usually based on rather com
many-body techniques, and lack the inherent simplicity
the implementations of Monte Carlo approaches. Also, e
though most real-time methods start from the variatio
principle, this principle is often violated in an attempt
obtain a viable calculational scheme.

An important difference between real- and imagina
time approaches is the way they deal with excitations
whereas in imaginary-time methods excited states need t
found by looking at exponentials with faster decay than
ground state, or via complicated Gramm–Schmidt ortho
nalization procedures, the calculation of excitations is of
much more straightforward for the real-time methods. On
we have constructed the ground state we can build exc
states on top of this ground state, using sets of excita
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operators. The calculational scheme used is then very sim
for both the ground state and the excited states.

In this Brief Report we shall concentrate on zero tempe
ture, also called quantum, phase transitions. The most im
tant exact statement for such situations is the Coleman no
theorem@1# which states that, in one space dimension a
under rather generous conditions, there is no phase trans
to a state with long-range order. As is well known from t
exact solution of theXXZ model in (111) dimensions@2#,
this does not preclude a phase transition with an appa
gapless mode, but without real long-range order. Notw
standing such special cases, the theorem is a strong in
ment against mean-field calculations, usually the lowest
der in the real-time approaches, since these often pre
phase transitions with long-range order even in one dim
sion. The reason is that mean-field theory ignores the str
interactions of the massless modes that accompany su
phase transition, which pushes up the mass of the would
zero-mass modes.

One way to avoid this phenomenon is to concentrate
the phase with unbroken symmetry, and to construct a
culational scheme for that phase. Such approaches have
used in spin-lattice systems and in lattice field theor
@3–6#, but it has been found that they sometimes lead
termination points, probably indicating a phase transition,
the (111)-dimensional system as well as in higher dime
sions. The excitation spectrum supports this behavior,
suggests a phase transition to a state with long-range or

The most complicated part of the real-time approache
the choice of a truncation scheme. One must make a se
tion which has enough degrees of freedom not to restrict
physical behavior of the system, nor to impose any assu
tions of the nature of the phase transition on the system,
not too many to make the calculation infeasible. A go
choice of wave function is key to any quantum many-bo
calculation, and more importantly, there must be a way
extend the calculations so as to test any assumptions b
made.

Our approach is an example of such a formalism. T
approach we use is, however, systematic and will not g
rise to spurious phase transitions. The method is an offsh
of the coupled cluster method, called the extended coup
cluster method~ECCM! @7#. Theoretical aspects of th
method have been analyzed in great detail in Ref.@7#, but the
number of applications to nontrivial models is extreme
limited. It has several advantages over earlier versions. F
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BRIEF REPORTS PHYSICAL REVIEW E 63 037103
of all, the mean-field approximation is a natural part of t
hierarchy of approximations inherent to the method. It is th
suitable to deal with states at both sides of a phase transi
where one exists. We shall show in this letter that an~in
principle infinite! set of improvements removes the spurio
transition in one-dimensional systems. For the moment
shall not include the mean-field term in our calculations,
concentrate on two-site correlations instead. While this
stricts us to the symmetric phase, it makes it easier to
form numerical calculations, which can be quite substan

We shall illustrate our method with a simple field theor
the O(4) nonlinear sigma~NLS! model. We have chosen t
discretize the Lagrangian for this model on a lattice in spa
keeping time continuous. We then construct a Hamiltoni
which is the quantity being studied. The basic degrees
freedom are unitary two-by-two matrices, but these can a
be represented by a four-dimensional unit vector (n,n4), us-
ing a basis of Pauli matricest,

U5n4I 1 i t•n. ~1!

The Hamiltonian is most succinctly expressed in the an
between nearest-neighbor vectors, and the on-site gen
ized angular momenta,

H5
1

2 (
i

I i
21l(̂

ij &
~12cosu ij !, ~2!

where the sum over̂ij & runs over all nearest-neighbor pair
and counts each pair~or lattice link! only once. The kinetic
energy is proportional to the square of the~four-dimensional!
angular momentum,I i

2 . This model shows great similarit
with some Heisenberg-type models used in condens
matter physics.

We expect a phase transition due to the competition
tween the kinetic and potential terms. For smalll, the weak-
coupling limit, the first term is dominant and the syste
consists of a set of independent rotors. In the strong coup
limit the potential dominates and all vectors tend to align.
we increasel the excitation spectrum is also expected
change from a free rotor spectrum at smalll, to a spectrum
containing three Goldstone modes, corresponding to the
namical breaking of chiral symmetry,O(4)→O(3), at large
l.

This behavior can most easily be seen in the mean-fi
approximation. Let us assume that on average all the vec
align along the 4-axis. It can be shown that in that case
obtain @8# a nonlinear version of the Mathieu equatio
which has a nontrivial solution~with broken symmetry! only
for lD.3, with a standard first-order phase transition al
53/D, whereD is the dimensionality of space. Below th
phase transition point the wave function at each site is
the spherically symmetricSwave of the free rotor, and abov
the phase transition we find a two-dimensional degener
corresponding to positive and negative alignment with
4-axis.

In the symmetric phase, one can ignore the one-b
alignment, and concentrate on two-site correlations. We h
investigated these processes using the normal coup
03710
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cluster method@6#, and have found that without the one-bod
term there is a termination point for one, two, and thr
dimensions. This has been interpreted as a signature
phase transition. In one dimension this cannot be true, s
the Coleman theorem forbids such a phase transition. T
makes one distrust the other results as well. We show
the extended CCM is able to give much more reliable resu

In the extended coupled cluster method the bra and
states are parametrized independently, corresponding to
use of a bi-orthogonal basis. We define two operatorsŜ and
Ŝ9, from which we we build up a variational functionalI
which is the ground state expectation value of the Ham
tonian in a special state,

I @S9,S#5^F0ueŜ9e2ŜHeŜuF0&5^C̃uHuC&, ~3!

where uF0& is the model, or reference, state, that must
chosen separately. A key ingredient in the definition of t
correlations is a set of generalized creation operators,
must be chosen with reference to the stateuF0&, i.e., the
Hermitian conjugates of the creation operators annihil
uF0&. In the symmetric phase we shall use the free-ro
vacuum, the product ofS waves at each lattice site, as refe
ence state. It can be shown that the use of single-site op
tors is a way to construct the mean-field approximatio
When the mean-field is zero, the lowest nontrivial corre
tions are two-site operators,

Ŝ5(
i,j

Ŝij , ~4!

where the sums run over the infinite lattice, and similarly
Ŝ9. The operatorsŜij create a simultaneous excitation at t
lattice sitesi and j . The precise definition of these operato
is not crucial to the current discussion, and can be found
our previous work@6#. By going to the coordinate represen
tation, it has been shown that specification of the opera
Ŝij corresponds to specification of a single functi
S(cosuij ). We choose to work in this representation. In t
numerical calculation we have to truncate up to a cert
length of the relative distance betweeni andj , but this can be
investigated systematically by using various truncations
studying convergence. Both the bra- and ket-state corr
tions have to be truncated in the same manner to ensure
conservation of certain analytical properties of the var
tional principle underlying the method@7#. The functions
S(cosuij ) can be expanded in Gegenbauer polynomials
the relative angleu ij between the unit vectors at lattice site
i and j , but the expansion converges so quickly that the
sults are essentially converged with the first five polynom
als. Because of the translational symmetry of the lattice
correlation functions depend only on the relative vec
i2 j . For an optimal choice ofSandS9 the functionalI must
be stationary with respect to independent variations of
bra and ket states. This leads to the nonlinear ECCM eq
tions @7#
3-2
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dI @$S9,S%#

dSi2 j9
50,

dI @$S9,S%#

dSi2 j
50. ~5!

Since the ket state is defined as an exponential it cont
automatically all possible independent combinations of c
relations on top of the~lowest-order! sum of independen
correlations. This is a natural choice, since the correla
operators are combined in linked objects, such as in G
stone’s linked cluster theorem@9#, and, indeed the couple
cluster method itself provides by far the easiest proof of t
important theorem@10#. Due to the similarity transform ex
ponentiale2Ŝ on the left-hand side of the Hamiltonian in th
functional Eq.~3!, I is a polynomial in the correlation func
tions. This has large advantages for high-order comp
implementations to solve Eqs.~5!.

We shall contrast the results of the extended coupled c
ter method to those of the normal coupled cluster met
~NCCM!, where the bra state is parametrized linearly inS9,

^C̃u5^F0u~11Ŝ9!e2Ŝ. ~6!

Therefore, in the NCCM, the overlap of the bra and ket sta
extends only as far as the correlation operatorŜ9. It has been
shown in Ref.@7# that exponentiatingŜ9 extends the overlap
over the whole lattice and also breaks certain symmetrie
the functional which allows one to cross a phase transit
instead of breaking down at the phase transition point, wh
often occurs for the NCCM.

Using the time-dependent variational principle we c
find low-lying excitations of the system by considering ha
monic fluctuations about the ground state, also called
RPA approximation. Since we have the functional in an a
lytical form we are able to calculate the excitation energ
relatively straightforwardly.~see Figs. 1 and 2.!

FIG. 1. ~a! The lowest excitation energies and~b! the second
derivative of the ground-state energy for the NLS model in
11) dimensions. The labelsn–m refer to truncations atn base
functions andm correlations.
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We have applied the ECCM to the NLS model on a
11)- and a (311)-dimensional cubic lattice. We have stu
ied various truncations, and found that for the expansion
Sij in Gegenbauer polynomials five such functions appea
be enough. For the truncation of the range of the functionS
we have proceeded as far as practicable, by including
correlations that fit within a cube of sizeL. For the
(111)-dimensional case we can almost use arbitrarily la
values ofL, say including a hundred lattice sites. For t
(311)-dimensional result the best calculation was limited
those correlations that fit inside a cube of length 5.

For a linear chain the ground-state energy has conver
completely with correlations which extend over up to
lattice sites. The susceptibility, the second-order deriva
of the ground-state energy, changes smoothly with the c
pling constant, indicating the absence of a transition reg
This is confirmed by the excitation energy. The lowest ex
tation energy seems to have converged with five base fu
tions and 75 correlations, although the global trend sets i
much lower orders. The mass gap remains finite. Clea
these results are in agreement with the Coleman theorem
are a step beyond the mean-field, and NCCM, results.

For the cubic lattice the ground-state energy has more
less converged for five base functions and all 55 correlati
that fit in a 53535 box. The susceptibility shows two re
gions: a linear, almost constant, susceptibility for the we
coupling regime, and a steeper behavior for the stro
coupling regime. In low-order calculations the behav
betweenl'0.6 andl'0.7 changes drastically, while th
trend on both sides outside this region is already predicted
low-order results. Even though the results do not allow us
make a definite statement about the nature of the transitio
seems weaker than a second-order phase transition. Th

FIG. 2. ~a! The lowest excitation energies, and~b! the second
derivative of the ground-state energy for the NLS model in
11) dimensions. The triangle indicates the NCCM endpo
The labelsn–m refer to truncations atn base functions andm
correlations.
3-3
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BRIEF REPORTS PHYSICAL REVIEW E 63 037103
citation energies again confirm these results. Although
convergence is too slow to determine whether a mass
mode appears, it dips at the phase transition and rises fa
the strong-coupling regime. Several low-lying excitation e
ergies turn complex beyond the phase transition, indica
that excitations in this, distinctly different, phase are n
properly described without the one-site correlations nec
sary to describe symmetry breaking. The absence of this
nomenon in (111) dimensions is another indication that n
phase transition occurs for this case.

The slow convergence in the transition region also in
cates that many long-range correlations play an impor
role as is the case in a real phase transition. The absen
this behavior in (111) dimensions is due to the speci
properties of the one-dimensional system that keeps the
relation length finite. The ECCM has the property that bo
the ket and bra states are expressed in linked-cluster co
cients. Therefore, the length over which ECCM correlat
operators extend is a good indication of the length of
physical correlations.

Since we have a dual expansion, in the extent of the c
relations, and in each correlation in a set of basis functio
we must look at the truncation systematics for both of the
For the (111)-dimensional system, beyond a minimu
length of the correlations~about 30 lattice units!, the results
s.
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only depend on the number of basis functions, which in
cates a finite, physical correlation length. The converge
with the number of basis functions is quite fast, indicati
that the correlations are smooth functions of the relat
angle, which indicates that the large number of correlatio
are essential to describe the phase transition properly s
single correlation operators contribute only very little. Th
also holds for the (311)-dimensional system, but we neve
fully reach convergence with the range of the correlatio
Both expansions seem to interplay in a complicated way
the results. However, the ground-state energies gene
converge much faster than the excitation energies.

With the ECCM we find signatures for a phase transiti
of the O(4) nonlinear sigma model in (311) dimensions,
which confirm our naive expectations. In (111) dimensions
the phase transition does not occur, as expected from C
man’s theorem. These results show clearly that ECCM
proper many-body technique for the microscopic study
phase transitions and other critical phenomena in cases i
cessible with other methods, and we intend to use it in f
ther studies.
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